SYNTHESIS, DOCKING AND ANTITUBERCULAR ACTIVITY OF SOME NEWER AZETIDINONES

Kilarimath Basavaraj1*, Karigar Asifiqbal2

1Research Scholar, Department of Pharmaceutical Science, JJT University, Jhunjhunu, Rajasthan-333001, India
2Professor, Department of Pharmaceutical Analysis, Maratha Mandal’s College of Pharmacy, Belgaum, Karnataka, India

Received 12-12-2013; Revised 11-01-2014; Accepted 10-02-2014

*Corresponding Author: Basavaraj Kilarimath
Research Scholar, JJT University, Jhunjhunu, Rajasthan-333001Email: raj_kilarimath@rediffmail.com

ABSTRACT

Azetidinones are important class of heterocyclic compounds due to their versatile biological activity. A novel series of 3-chloro-4-(substituted) phenyl-1-[5-(substituted) phenyl [1,3,4] thiadiazol-2-yl] azetidin-2-one (VI a-n) derivatives were synthesized in good yield by the cycloaddition of N-[(1E)-phenyl methylene]-5-pyridin-3-yl-1,3,4-thiadiazol-2-amine (V a-n) with chloroacetyl chloride in presence of triethyl amine catalyst. The structures of the synthesized compounds were confirmed by FT-IR, 1H NMR, 13C NMR, MASS data and elemental analysis. Docking studies has been carried out by using Hex software for all the newly synthesized compounds. All the synthesized compounds were tested against Mycobacterium tuberculosis using Microplate Alamar Blue Assay method. Preliminary results indicated that most of the compounds tested in this study demonstrated comparable activity against Mycobacterium tuberculosis as compared with standard Streptomycin, Pyrazinamide and Ciprofloxacin. Among the series, compound VI e, VI g, VI k, VI l, VI m and VI n showed better antitubercular activity compared to all the standard drugs pyrazinamide, streptomycin and ciprofloxacin. The structure and biological activity relationship of titled compounds showed that the presence of pharmacophoric moieties like 1,3,4-thiadiazole nucleus, β-lactam ring and the substituent’s like 2-methoxy benzaldehyde, 4-methoxy benzaldehyde, 2-hydroxy benzaldehyde and 4-hydroxy benzaldehydetached to it will increases the activity.

Keywords: Antituberculosis, Azetidinone, 1,3,4-Thiadiazole, Chloroacetyl chloride, Docking.

INTRODUCTION

It is well established that slight alterations in the structure of certain compounds are able to bring drastic changes to yield better drug with less toxicity to the host. It is observed that chemical modification not only alters physicochemical properties but also pharmacological activities. Discovery of newer and more potent analogs of molecules with already established activities form a key part of research in the pharmaceutical field. Bringing about slight modifications in the parent compound often serves to enhance the activity of the compound and also in most cases eliminates adverse effects or toxicity associated with the parent drug. The β-lactam heterocycles are still the most prescribed antibiotics used in medicine. They are considered as an important contribution of science to humanity. The most widely used antibiotics such as the penicillins, cephalosporins, carunomon, aztreonam, thienamycine and the nocardicins all contain β-lactam rings. Biological activity of these heterocycles has helped the medicinal chemist to plan, organize and implement newer approaches towards the discovery of newer drugs. In view of the general observation that pharmacological activity is invariably associated with a large variety of heterocyclic compounds, the investigation of some heterocycles such as azetidinone derivatives has been undertaken. Derivatives of these compounds are reported to possess a wide spectrum of biological activities which include anti-inflammatory, analgesic, antitumour, antihypertensive, anticonvulsant and antimicrobials. Owing to the importance and established physiological activity of these azetidinones, it was thought to synthesize and investigate compounds with comparable structures. Owing to the importance and established pharmacological activity of these compounds we are directed our attention towards synthesis and docking of some new 2-azetidinone derivatives with object of screening them for antitubercular activity.

MATERIALS AND METHODS

All Chemicals used in the synthesis of the compounds described were purchased from Loba chemicals, Ozone chemicals, S.D. fine chemicals Ltd. and Spectrochem Ltd. They were nicotinic acid, isonicotinic acid, thiosalicylcarbazide,
phosphoryl oxy trichloride, chloroacetyl chloride, ethanol, triethyl amine and various aromatic aldehydes, sulphuric acid, potassium hydroxide etc. These are either AR/LR grade or the best possible pharma grade available were used here. Melting points were determined in open capillaries in electrical melting point apparatus and are uncorrected. FT-IR spectra in KBr disk were recorded from 4000 to 400 cm\(^{-1}\) on Avatar 330 FT-IR spectrometer equipped with DTGS detector. \(^1\)H NMR spectra were recorded on 400-MHz and 500-MHz Bruker spectrometer in DMSO-\(d_6\) or CDCl\(_3\) using TMS as an internal standard. Mass spectra were recorded using Agilent 1100 MSD spectrometer in electro spray mode. Compounds were checked for their purity by TLC on silica gel G plates and spots were located by exposing to UV light and iodine vapours. The following materials that were either AR/LR grade or the best possible pharma grade available were used as supplied by the manufacturer.

General method for the synthesis of 5-(substituted) phenyl-N-[(1E)-(substituted) phenyl methylene]-1,3,4-thiadiazol-2-amine(V a-n)\(^{10-11}\)

2-amino-5-substituted acid-1,3,4-thiadiazole (IV a-b) required as the starting material was prepared by the reaction of thiosemicarbazide with substituted acids in one pot synthesis. 2-amino-5-substituted acid-1,3,4-thiadiazole (IV a-b) on condensation with various selected aromatic aldehydes furnishes Schiff bases, 5-(substituted) phenyl-N-[(1E)-(substituted) phenyl methylene]-1,3,4-thiadiazol-2-amine shown in scheme.

General method for the synthesis of 3-chloro-4-(substituted) phenyl-1-[5-(substituted) phenyl [1,3,4 thiadiazol-2-yl] azetidin-2-one (VI a-n)\(^{11-12}\)

The four membered \(\beta\)-lactam ring in compound was introduced by the cycloaddition of 5-(substituted) phenyl-N-[(1E)-(substituted) phenyl methylene]-1,3,4-thiadiazol-2-amine(V a-n) and chloroacetyl chloride in presence of triethyl amine as catalyst to give 3-chloro-4-(substituted) phenyl-1-[5-(substituted) phenyl [1,3,4 thiadiazol-2-yl] azetidin-2-one(VI a-n) as shown in scheme 1. The physico-chemical parameters of the synthesized compounds are depicted in Table 1.

DOCKING STUDIES

Docking study was done with HEX-software for the newly synthesized compounds to dock with the antitubercular protein (2YES) from Protein Data Base (PDB). Hex is an interactive molecular graphics program for calculating and displaying feasible docking modes of pairs of protein and DNA molecules. Hex can also calculate protein-ligand docking, assuming the ligand is rigid, and it can superpose pairs of molecules using only knowledge of their 3D shapes. In Hex's docking calculations, each molecule is modeled using 3D expansions of real orthogonal spherical polar basis functions to encode both surface shape and electrostatic charge and potential distributions. Hex is also very easy to use. However, to use Hex most effectively, sometimes require some thought when setting up the calculation, especially when setting up the starting orientations of the proteins to be docked.

Molecular docking involves the following steps using Hex 5.1 software:

Identified a target protein 2YES from the Protein data Bank. Downloaded PDB FILE (text) and saved it in Example Folder of Hex 5.1. Drawn all the ligands using chemsketch. Generated 3-D view (SDF format), convert it into MOL file. Converted into PDB format by using Swiss PDB viewer and saved it. Open Hex 5.1 software, selected appropriate protein and ligand and performed docking. The docking results of the synthesized compounds Vla-nare depicted in Table 2.

ANTITUBERCULAR ACTIVITY

Method: Microplate Alamar Blue Assay (MABA)

Preparation of Inoculum: 100 \(\mu\)l of the Middle brook 7H9 broth

Requirements: 96 wells plate, Para film (all are sterilized by dry heat).

Nutrient Medium: 25\(\mu\)l of freshly prepared 1:1 mixture of Almar Blue reagent and 10% tween 80

Working procedure Stock solutions of the synthesized compounds and standard drug used were prepared insterilized deionized water and taken in the concentration of 0.1 to 100 \(\mu\)l/ml.

The anti-mycobacterial activities of compounds III a-n were assessed against M. tuberculosis using Microplate Alamar Blue Assay\(^{13,14}\) (MABA). This methodology is non-toxic, uses a thermally stable reagent and shows good correlation with proportional and BACTEC radiometric method\(^{15,16}\). Briefly, 200\(\mu\)l of sterile deionized water was added to all outer perimeter wells of sterile 96 wells plate to minimized evaporation of medium in the test wells during incubation. The 96 wells plate received 100 \(\mu\)l of the Middle brook 7H9 broth and serial dilutions of compounds were made directly on plate. The final drug concentrations tested were 100 to 0.2 \(\mu\)g/ml. Plates were covered and sealed with Para film and incubated at 37°C for five days. After this time, 25\(\mu\)l of freshly prepared 1:1 mixture of Almar Blue reagent and 10% tween 80 was added to the plate and incubated for 24 hrs. A blue color in the well was interpreted as no bacterial growth, and pink color was scored as growth. The MIC was defined as lowest drug concentration which prevented the color change from blue to pink. The antitubercular activities of the synthesized compounds are depicted in Table 3.

RESULTS AND DISCUSSION

A new series of 3-chloro-4-phenyl-1-[5-pyridin-3-yl-1,3,4-thiadiazol-2-yl] azetidin-2-one (VI a-n) were synthesized in good yield according to reaction scheme 1. All the newly synthesized compounds were screened for the antitubercular activity by MABA (Microplate Alamar Blue Assay) method. Pyrazinamide, Streptomycin and Ciprofl Roxine drugs are used as standards and activity of all newly synthesized compounds were measured against it. Docking studies has been carried out by using Hex software for all the compounds. All the derivatives were docked with target protein for tuberculosis (2YES) to predict the antitubercular activity. The result of the docking studies clearly confirms that compounds VI e, VI g, VI k and VI m are active against the tuberculosis and VI l and VI n compound showed potent antitubercular activity. The structures of the synthesized compounds were confirmed by FT-IR, \(^1\)H NMR, \(^13\)C NMR, FABMS data and elemental analysis. The antimycobacterial activities of compounds VI a-n were assessed against M. tuberculosis.
tuberculosis H37Rv (ATCC 27294) using Microplate Alamar Blue Assay (MABA). This methodology is nontoxic, uses a thermally-stable reagent and shows good correlation with BACTEC radiometric methods and the activity expressed as the minimum inhibitory concentration (MIC) in µg/ml. The MICs of the compounds were carried out and showed good antitubercular activity compared to standards pyrazinamide, streptomycin and ciprofloxacin. In a series VI, a-n, compounds VI e, VI g, VI k, VI l, VI m and VI n showed better antitubercular activity compared to all the standard drugs pyrazinamide, streptomycin and ciprofloxacin and compounds VI d, VI f, VI i and VI j showed similar activity compared to standard streptomycin. The structure and biological activity relationship of title compounds showed that the presence of 1,3,4-thiadiazole nucleus, β-lactam ring and the substituent’s like 2-methoxy benzaldehyde, 4-methoxy benzaldehyde, 2-hydroxy benzaldehyde and 4-hydroxy benzaldehyde attached to it will increases the activity.

SPECTRAL DATA

3-chloro-4-phenyl-1-(5-pyridin-3-yl-1,3,4-thiadiazol-2-yl)azetidin-2-one

![Structure of VIa](image)

The following spectral data were recorded for compound VI a:

FTIR (KBr) cm⁻¹: 3118 (Ar C-H), 2973 (C-H), 2884 (C-H thiazole), 1695 (C=O), 708 (C-S-C), 766 (C=Cl); ¹H NMR chemical shifts at (400 MHz, CDCl₃, δ ppm): 11.12 (s, 1H, CH), 7.92 (s, 1H, CH), 7.28-7.60 (m, 10H, Ar-H), 4.14 (d, 1H, N-CH), 5.15 (d, 1H, CH-Cl); MS spectrum, m/z: 343[M+1]⁺.

3-chloro-4-(2-chlorophenyl)-1-(5-pyridin-3-yl-1,3,4-thiadiazol-2-yl)azetidin-2-one

![Structure of VIb](image)

The following spectral data were recorded for compound VI b:

FTIR (KBr) cm⁻¹: 3122 (Ar C-H), 2975 (C-H), 2888 (C-H thiazole), 1689 (C=O), 702 (C-S-C), 755 (C=Cl); ¹H NMR chemical shifts at (400 MHz, CDCl₃, δ ppm): 11.14 (s, 1H, CH), 7.98 (s, 1H, CH), 7.30-7.68 (m, 9H, Ar-H), 4.11 (d, 1H, N-CH), 5.18 (d, 1H, CH-Cl); MS spectrum, m/z: 378[M+1]⁺.

3-chloro-4-(4-chlorophenyl)-1-(5-pyridin-3-yl-1,3,4-thiadiazol-2-yl)azetidin-2-one

![Structure of VIc](image)

The following spectral data were recorded for compound VI c:

FTIR (KBr) cm⁻¹: 3115 (Ar C-H), 2960 (C-H), 2888 (C-H thiazole), 1696 (C=O), 710 (C-S-C), 775 (C=Cl); ¹H NMR chemical shifts at (400 MHz, CDCl₃, δ ppm): 11.17 (s, 1H, CH), 7.82 (s, 1H, CH), 7.15-7.72 (m, 9H, Ar-H), 4.12 (d, 1H, N-CH), 5.24 (d, 1H, CH-Cl); MS spectrum, m/z: 378[M+1]⁺.

3-chloro-4-(2-methoxyphenyl)-1-(5-pyridin-3-yl-1,3,4-thiadiazol-2-yl)azetidin-2-one

![Structure of VId](image)

The following spectral data were recorded for compound VI d:

FTIR (KBr) cm⁻¹: 3111 (Ar C-H), 2989 (C-H), 2945 (C-H thiazole), 1693 (C=O), 702 (C-S-C), 761 (C=Cl); ¹H NMR chemical shifts at (400 MHz, CDCl₃, δ ppm): 9.99.16 (s, 1H, CH), 7.90 (s, 1H, CH), 7.18-7.54 (m, 8H, Ar-H), 2.57 (s, 3H, CH₃), 4.21 (d, 1H, N-CH), 5.10 (d, 1H, CH-Cl); ¹³C NMR chemical shifts at (75 MHz, DMSO-d₆, δ ppm): 21.72, 29.28, 32.87, 129.24, 129.35, 130.65, 131.26, 131.71, 132.30, 133.83, 153.17, 153.68, 156.23, 157.40, 157.10; MS spectrum, m/z: 373[M+1]⁺; Anal. Calcd for C₁₇H₁₃ClN₄O₂S: C (58.03), H (3.90), N (10.15). Found: C (57.98), H (3.85) and N (10.09).

3-chloro-4-(4-methoxyphenyl)-1-(5-pyridin-3-yl-1,3,4-thiadiazol-2-yl)azetidin-2-one

![Structure of VIe](image)

The following spectral data were recorded for compound VI e:

FTIR (KBr) cm⁻¹: 3090 (Ar C-H), 2955 (C-H), 2894 (C-H thiazole), 1685 (C=O), 669 (C-S-C), 760 (C=Cl); ¹H NMR chemical shifts at (400 MHz, CDCl₃, δ ppm): 10.18 (s, 1H, CH), 7.92 (s, 1H, CH), 7.18-7.58 (m, 8H, Ar-H), 2.45 (s, 3H, CH₃), 4.08 (d, 1H, N-CH), 5.08 (d, 1H, CH-Cl); MS spectrum, m/z: 373[M+1]⁺.
3-chloro-4-(2-hydroxyphenyl)-1-(5-pyridin-3-yl-1,3,4-thiadiazol-2-yl) azetidin-2-one

The following spectral data were recorded for compound VI f:
FTIR (KBr) cm\(^{-1}\): 3545 (O-H), 3105 (Ar C-H), 2960 (C-H), 2896 (C-H thiazole), 1748 (-C=O), 713 (C-S-C), 767 (-C-Cl);
\(^1\)H NMR chemical shifts at (400 MHz, CDCl\(_3\), δ ppm): 10.16 (s, 1H, CH), 7.86 (s, 1H, CH), 7.25–7.63 (m, 8H, Ar −H), 2.35 (s, 6H, CH\(_3\)), 4.10 (d, 1H, N−CH), 5.10 (d, 1H, -CH-Cl); MS spectrum, m/z: 359 [M+1]\(^+\).

3-chloro-4-(4-hydroxyphenyl)-1-(5-pyridin-3-yl-1,3,4-thiadiazol-2-yl)azetidin-2-one

The following spectral data were recorded for compound VI g:
FTIR (KBr) cm\(^{-1}\): 3545 (O-H), 3005 (Ar C-H), 2955 (C-H), 2875 (C-H thiazole), 1738 (-C=O), 715 (C-S-C), 766 (-C-Cl); \(^1\)H NMR chemical shifts at (400 MHz, CDCl\(_3\), δ ppm): 9.63 (s, 1H, CH), 7.83 (s, 1H, CH), 7.18–7.34 (m, 9H, Ar −H), 5.28 (s, 1H, OH), 4.14 (d, 1H, N−CH), 5.11 (d, 1H, -CH-Cl); MS spectrum, m/z: 359 [M+1]\(^+\).

3-chloro-4-phenyl-1-(5-pyridin-4-yl-1,3,4-thiadiazol-2-yl)azetidin-2-one

The following spectral data were recorded for compound VI h:
FTIR (KBr) cm\(^{-1}\): 3010 (Ar C-H), 2966 (C-H), 2888 (C-H thiazole), 1750 (-C=O), 705 (C-S-C), 780 (-C-Cl);
\(^1\)H NMR chemical shifts at (400 MHz, CDCl\(_3\), δ ppm): 9.69 (s, 1H, CH), 7.88 (s, 1H, CH), 7.20–7.41 (m, 8H, Ar−H), 2.35 (s, 6H, CH\(_3\)), 4.10 (d, 1H, -N-CH), 5.10 (d, 1H, -CH-Cl); MS spectrum, m/z: 343 [M+1]\(^+\).

3-chloro-4-(2-chlorophenyl)-1-(5-pyridin-4-yl-1,3,4-thiadiazol-2-yl)azetidin-2-one

The following spectral data were recorded for compound VI i:
FTIR (KBr) cm\(^{-1}\): 3008 (Ar C-H), 2962 (C-H), 2881 (C-H thiazole), 1738 (-C=O), 713 (C-S-C), 766 (-C-Cl);
\(^1\)H NMR chemical shifts at (400 MHz, CDCl\(_3\), δ ppm): 9.68 (s, 1H, CH), 7.88 (s, 1H, CH), 7.20–7.41 (m, 8H, Ar−H), 5.21 (s, 2H, OH), 4.08 (d, 1H, -N-CH), 5.12 (d, 1H, -CH-Cl); MS spectrum, m/z: 378 [M+1]\(^+\).

3-chloro-4-(4-chlorophenyl)-1-(5-pyridin-4-yl-1,3,4-thiadiazol-2-yl)azetidin-2-one

The following spectral data were recorded for compound VI j:
FTIR (KBr) cm\(^{-1}\): 3094 (Ar C-H), 2989 (C-H), 2892 (C-H thiazole), 1679 (-C=O), 709 (C-S-C), 762 (-C-Cl); \(^1\)H NMR chemical shifts at (400 MHz, CDCl\(_3\), δ ppm): 9.82 (s, 1H, CH), 6.38 (s, 1H, CH), 7.17–7.72 (m, 9H, Ar−H), 1.42–1.47 (s, 6H, CH\(_3\)), 4.19 (d, 1H, -N-CH), 5.23 (d, 1H, -CH-Cl); MS spectrum, m/z: 378 [M+1]\(^+\).

3-chloro-4-(2-methoxyphenyl)-1-(5-pyridin-4-yl-1,3,4-thiadiazol-2-yl) azetidin-2-one

The following spectral data were recorded for compound VI k:
FTIR (KBr) cm\(^{-1}\): 3010 (Ar C-H), 2966 (C-H), 2888 (C-H thiazole), 1750 (-C=O), 705 (C-S-C), 762 (-C-Cl);
\(^1\)H NMR chemical shifts at (400 MHz, CDCl\(_3\), δ ppm): 9.69 (s, 1H, CH), 7.91 (s, 1H, CH), 7.11–7.37 (m, 8H, Ar−H), 5.20 (s, 2H, OH), 4.12 (d, 1H, -N-CH), 5.15 (d, 1H, -CH-Cl); MS spectrum, m/z: 343 [M+1]\(^+\).
3-chloro-4-(4-methoxyphenyl)-1-(5-pyridin-4-yl-1,3,4-thiadiazol-2-yl)azetidin-2-one

(VII)

The following spectral data were recorded for compound VI I:
FTIR (KBr) cm⁻¹: 3098 (Ar C-H), 2975 (C-H), 2892 (C-H thiazole), 1692 (C=O), 701 (C-S-C), 769 (C-Cl); ¹H NMR chemical shifts at (400 MHz, CDCl₃, δ ppm): 9.83 (s, 1H, CH); 6.37 (s, 1H, CH); 7.82-7.99 (m, 8H, Ar-H); 3.52 (s, 3H, OCH₃), 1.40-1.47 (s, 6H, CH₃), 4.10 (d, 1H, -N-CH), 5.22 (d, 1H, -CH-Cl); MS spectrum, m/z: 373 [M+1]⁺.

3-chloro-4-(2-hydroxyphenyl)-1-(5-pyridin-4-yl-1,3,4-thiadiazol-2-yl)azetidin-2-one

(VII m)

The following spectral data were recorded for compound VI m:
FTIR (KBr) cm⁻¹: 3546 (O-H), 3008 (Ar C-H), 2957 (C-H), 2876 (C-H thiazole), 1733 (C=O), 676 (C-S-C), 782 (C-Cl).
¹H NMR chemical shifts at (400 MHz, CDCl₃, δ ppm): 9.64 (s, 1H, CH), 7.86 (s, 1H, CH), 7.18-7.37 (m, 9H, Ar-H), 5.25 (d, 1H, -OCH₃), 4.17 (d, 1H, -N-CH), 5.12 (d, 1H, -CH-Cl); MS spectrum, m/z: 359 [M+1]⁺.

3-chloro-4-(4-hydroxyphenyl)-1-(5-pyridin-4-yl-1,3,4-thiadiazol-2-yl)azetidin-2-one

(VII n)

The following spectral data were recorded for compound VI n:
FTIR (KBr) cm⁻¹: 3549 (O-H), 3006 (Ar C-H), 2957 (C-H), 2877 (C-H thiazole), 1734 (C=O), 677 (C-S-C), 783 (C-Cl).
¹H NMR chemical shifts at (400 MHz, CDCl₃, δ ppm): 9.68 (s, 1H, CH), 7.87 (s, 1H, CH), 7.17-7.34 (m, 9H, Ar-H), 5.24 (s, 1H, OCH₃), 4.16 (d, 1H, -N-CH), 5.13 (d, 1H, -CH-Cl); MS spectrum, m/z: 359 [M+1]⁺.

SCHEME 1

R = Nicotinic acid, Isonicotinic acid
R¹ = H, 2-Cl, 4-Cl, 2-OCH₃, 4-OCH₃, 2-OH, 4-OH

Reaction sequence for the synthesis of 3-chloro-4-phenyl-1-(5-pyridin-3-yl-1,3,4-thiadiazol-2-yl)azetidin-2-one (VI a-n)
Table 1: Physico-chemical data of 3-chloro-4-(substituted) phenyl-1-[5-(substituted) phenyl [1,3,4] thiadiazol-2-yl] azetidin-2-one(VI a-n)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>R¹</th>
<th>Yield (%)</th>
<th>M. P. (°C)</th>
<th>Rf</th>
<th>Molecular Formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI a</td>
<td>Nicotinic acid</td>
<td>H</td>
<td>63</td>
<td>180</td>
<td>0.61</td>
<td>C₁₆H₁₁ClN₄OS</td>
</tr>
<tr>
<td>VI b</td>
<td>Nicotinic acid</td>
<td>2-Cl</td>
<td>61</td>
<td>185</td>
<td>0.75</td>
<td>C₁₆H₁₀Cl₂N₄OS</td>
</tr>
<tr>
<td>VI c</td>
<td>Nicotinic acid</td>
<td>4-Cl</td>
<td>65</td>
<td>179</td>
<td>0.67</td>
<td>C₁₆H₁₀Cl₂N₄OS</td>
</tr>
<tr>
<td>VI d</td>
<td>Nicotinic acid</td>
<td>2-OCH₃</td>
<td>58</td>
<td>192</td>
<td>0.65</td>
<td>C₁₆H₁₁ClN₄O₂S</td>
</tr>
<tr>
<td>VI e</td>
<td>Nicotinic acid</td>
<td>4-OCH₃</td>
<td>51</td>
<td>195</td>
<td>0.81</td>
<td>C₁₆H₁₁ClN₂O₄S</td>
</tr>
<tr>
<td>VI f</td>
<td>Nicotinic acid</td>
<td>2-OH</td>
<td>49</td>
<td>205</td>
<td>0.82</td>
<td>C₁₆H₁₁ClN₄O₂S</td>
</tr>
<tr>
<td>VI g</td>
<td>Nicotinic acid</td>
<td>4-OH</td>
<td>47</td>
<td>195</td>
<td>0.69</td>
<td>C₁₆H₁₁ClN₄O₂S</td>
</tr>
<tr>
<td>VI h</td>
<td>Isonicotinic acid</td>
<td>H</td>
<td>55</td>
<td>189</td>
<td>0.69</td>
<td>C₁₆H₁₁ClN₄O₂S</td>
</tr>
<tr>
<td>VI i</td>
<td>Isonicotinic acid</td>
<td>2-Cl</td>
<td>58</td>
<td>186</td>
<td>0.75</td>
<td>C₁₆H₁₀Cl₂N₄OS</td>
</tr>
<tr>
<td>VI j</td>
<td>Isonicotinic acid</td>
<td>4-Cl</td>
<td>48</td>
<td>205</td>
<td>0.81</td>
<td>C₁₆H₁₀Cl₂N₄OS</td>
</tr>
<tr>
<td>VI k</td>
<td>Isonicotinic acid</td>
<td>2-OCH₃</td>
<td>45</td>
<td>190</td>
<td>0.82</td>
<td>C₁₆H₁₁ClN₄O₂S</td>
</tr>
<tr>
<td>VI l</td>
<td>Isonicotinic acid</td>
<td>4-OCH₃</td>
<td>52</td>
<td>188</td>
<td>0.69</td>
<td>C₁₆H₁₁ClN₂O₄S</td>
</tr>
<tr>
<td>VI m</td>
<td>Isonicotinic acid</td>
<td>2-OH</td>
<td>60</td>
<td>167</td>
<td>0.74</td>
<td>C₁₆H₁₁ClN₂O₄S</td>
</tr>
<tr>
<td>VI n</td>
<td>Isonicotinic acid</td>
<td>4-OH</td>
<td>58</td>
<td>190</td>
<td>0.83</td>
<td>C₁₆H₁₁ClN₂O₄S</td>
</tr>
</tbody>
</table>

* Benzene:Methanol:Ammonia (75:25:0.25) as a mobile phase and iodine vapors as visualizing agent.

Table 2: Docking results of 3-chloro-4-(substituted) phenyl-1-[5-(substituted) phenyl [1,3,4] thiadiazol-2-yl] azetidin-2-one(VI a-n)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>R¹</th>
<th>PDB CODE</th>
<th>E SCORE (KJ / Mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI a</td>
<td>Nicotinic acid</td>
<td>H</td>
<td>2YES</td>
<td>-133.41</td>
</tr>
<tr>
<td>VI b</td>
<td>Nicotinic acid</td>
<td>2-Cl</td>
<td>2YES</td>
<td>-144.21</td>
</tr>
<tr>
<td>VI c</td>
<td>Nicotinic acid</td>
<td>4-Cl</td>
<td>2YES</td>
<td>-145.28</td>
</tr>
<tr>
<td>VI d</td>
<td>Nicotinic acid</td>
<td>2-OCH₃</td>
<td>2YES</td>
<td>-146.31</td>
</tr>
<tr>
<td>VI e</td>
<td>Nicotinic acid</td>
<td>4-OCH₃</td>
<td>2YES</td>
<td>-149.11</td>
</tr>
<tr>
<td>VI f</td>
<td>Nicotinic acid</td>
<td>2-OH</td>
<td>2YES</td>
<td>-145.39</td>
</tr>
<tr>
<td>VI g</td>
<td>Nicotinic acid</td>
<td>4-OH</td>
<td>2YES</td>
<td>-148.91</td>
</tr>
<tr>
<td>VI h</td>
<td>Isonicotinic acid</td>
<td>H</td>
<td>2YES</td>
<td>-143.71</td>
</tr>
<tr>
<td>VI i</td>
<td>Isonicotinic acid</td>
<td>2-Cl</td>
<td>2YES</td>
<td>-146.68</td>
</tr>
<tr>
<td>VI j</td>
<td>Isonicotinic acid</td>
<td>4-Cl</td>
<td>2YES</td>
<td>-145.73</td>
</tr>
<tr>
<td>VI k</td>
<td>Isonicotinic acid</td>
<td>2-OCH₃</td>
<td>2YES</td>
<td>-148.59</td>
</tr>
<tr>
<td>VI l</td>
<td>Isonicotinic acid</td>
<td>4-OCH₃</td>
<td>2YES</td>
<td>-149.93</td>
</tr>
<tr>
<td>VI m</td>
<td>Isonicotinic acid</td>
<td>2-OH</td>
<td>2YES</td>
<td>-147.13</td>
</tr>
<tr>
<td>VI n</td>
<td>Isonicotinic acid</td>
<td>4-OH</td>
<td>2YES</td>
<td>-149.83</td>
</tr>
</tbody>
</table>

The synthesized compounds were docked with target protein for tuberculosis (2YES) to predict the antitubercular activity. The result of the docking studies clearly confirms that the synthesized compounds VIe, VIg, VIk and VIm are active against the tuberculosis and VII and VIn compound showed potent antitubercular activity.
Table 3: Antitubercular activity of 3-chloro-4-(substituted) phenyl-1-[5-(substituted) phenyl [1,3,4] thia diazol-2-yl] azetidin-2-one(VI a-n)

<table>
<thead>
<tr>
<th>Compound</th>
<th>R</th>
<th>R¹</th>
<th>MIC (µg/mL) M. tuberculosis H₃₇Rv</th>
</tr>
</thead>
<tbody>
<tr>
<td>VI a</td>
<td>Nicotinic acid</td>
<td>H</td>
<td>25</td>
</tr>
<tr>
<td>VI b</td>
<td>Nicotinic acid</td>
<td>2-Cl</td>
<td>12.5</td>
</tr>
<tr>
<td>VI c</td>
<td>Nicotinic acid</td>
<td>4-Cl</td>
<td>12.5</td>
</tr>
<tr>
<td>VI d</td>
<td>Nicotinic acid</td>
<td>2-OCH₃</td>
<td>6.25</td>
</tr>
<tr>
<td>VI e</td>
<td>Nicotinic acid</td>
<td>4-OCH₃</td>
<td>3.125</td>
</tr>
<tr>
<td>VI f</td>
<td>Nicotinic acid</td>
<td>2-OH</td>
<td>6.25</td>
</tr>
<tr>
<td>VI g</td>
<td>Nicotinic acid</td>
<td>4-OH</td>
<td>3.125</td>
</tr>
<tr>
<td>VI h</td>
<td>Isonicotinic acid</td>
<td>H</td>
<td>12.5</td>
</tr>
<tr>
<td>VI i</td>
<td>Isonicotinic acid</td>
<td>2-Cl</td>
<td>6.25</td>
</tr>
<tr>
<td>VI j</td>
<td>Isonicotinic acid</td>
<td>4-Cl</td>
<td>6.25</td>
</tr>
<tr>
<td>VI k</td>
<td>Isonicotinic acid</td>
<td>2-OCH₃</td>
<td>3.125</td>
</tr>
<tr>
<td>VI l</td>
<td>Isonicotinic acid</td>
<td>4-OCH₃</td>
<td>1.6</td>
</tr>
<tr>
<td>VI m</td>
<td>Isonicotinic acid</td>
<td>2-OH</td>
<td>3.125</td>
</tr>
<tr>
<td>VI n</td>
<td>Isonicotinic acid</td>
<td>4-OH</td>
<td>1.6</td>
</tr>
</tbody>
</table>

CONCLUSION

A new series 3-chloro-4-(substituted)phenyl-1-[5-(substituted) phenyl [1,3,4] thia diazol-2-yl] azetidin-2-one VI a-n were synthesized in good yields as shown in table and were evaluated for antibacterial, antifungal and antitubercular activities. Docking studies has been carried out using Hex software for all the derivatives. The structures of the synthesized compounds were confirmed by FT-IR, ¹H NMR, ¹³C NMR, FABMS data and elemental analysis. All the derivatives of VI a-n were analyzed for their physicochemical properties as shown in tables. All the derivatives of VI a-n were docked with target protein for tuberculosis (2YES) to predict the antitubercular activity. The results of the docking study for all the derivatives are shown in table. The result of the docking studies clearly confirms that compounds VI e, VI g, VI k and VI m are active against the tuberculosis and VI l and VI n compound showed potent antitubercular activity. The antimycobacterial activities of compounds VI a-n were assessed against M. tuberculosisH₃₇Rv (ATCC 27294) using Microplate Alamar Blue Assay (MABA).This methodology is nontoxic, uses a thermally-stable reagent and shows good correlation with BACTEC radiometric methods and the activity expressed as the minimum inhibitory concentration (MIC) in µg/mL. The MICs of the compounds were carried out and showed good antitubercular activity compared to standards pyrazinamide streptomycin and ciprofloxacin. In the series VI a-n, compounds VI e, VI g, VI k, VI l, VI m and VI n showed better antitubercular activity compared to all the standard drugs pyrazinamide, streptomycin and ciprofloxacin and compounds VI d, VI f, VI i and VI j showed similar activity compared to standard streptomycin. The structure and biological activity relationship of title compounds showed that the presence of 1,3,4-thiadiazole nucleus, β-lactam ring and the substituent’s like 2-methoxy benzaldehyde, 4-methoxy benzaldehyde, 2-hydroxy benzaldehyde and 4-hydroxy benzaldehyde attached to it will increases the activity.

ACKNOWLEDGEMENT

The authors are thankful to Dr. A. P. Basavarajappa, Principal of Bapuji Pharmacy College, Davangere, for providing necessary facilities and Maratha Mandal College of dental sciences, Belgaum for antitubercular activity. We are also thankful to director of SAIF, Chandigarh, Punjab and Director, USIC, Karnataka University, Dharwad for providing necessary spectras.

REFERENCES

4. Freddy HH,Sushil JM. Synthesis of some azetidin-2-ones and thiazolidin-4-ones as potential antimicrobial.

Source of support: Nil, Conflict of interest: None Declared