A HIGH PERFORMANCE SRAM ARRAY DESIGN USING COARSE GRAINED RECOVERY BOOSTING LOGIC

Suvitha PS*, Sajan Xavier
University of Calicut, Nehru College of Engineering and Research Centre Pampady, Kerala, India
Received: 05-03-2014; Revised: 04-04-2014; Accepted: 02-05-2014

*Corresponding Author: P.S Suvitha
University of Calicut, Nehru College of Engineering and Research Centre Pampady, Kerala, India, suvithaps@yahoo.com

ABSTRACT
Negative bias temperature instability is an important reliability problem in electronic industry. The Static RAM based structures within the microprocessor are mostly susceptible to NBTI because one of the pMOS transistors in the memory cell always has an input of Zero. Here we propose a technique called Recovery Boosting that provides both pMOS transistors in the memory cell to be brought into the recovery model. Evaluate the circuit-level design of coarse and fine grained recovery boosting techniques. Then conduct an architecture-level verification of the performances and the reliability of using area-neutral designs of physical register files and the issue queues. This shows that Coarse Grained Recovery Boosting provides significant improvement in speed while having very little impact on power consumptions and the performances.

Keywords: NBTI, Static RAM, DSCH, Micro wind, Physical register files, Issue queue

INTRODUCTION
The continued technology scaling of IC, the processors are becoming increasingly susceptible to hard error. Negative bias temperature instability is the one important hard error phenomenon which affects the lifetime of pMOS transistor. It occurs when a negative bias is applied at the gate of pMOS transistors. A interface trap is produced by this negative bias. It causes threshold voltage of the device increases. It will reduce the speed of the devices and also reduces the noise margin of the circuits; finally the circuit goes to damage. The interface traps can be eliminated by applying a logic input of “1” at the gate of the pMOS devices. This technique is known as recovery boosting. The static random access memory cells are mainly susceptible to hard error.

The Section II presents an overview of negative bias instability. The related work discuss on section III. The Section IV discusses the recovery boosting techniques and circuit-level designs, and the section V evaluation of the register files and the issue queue are given. The section IV experimental methodology used for the circuit-level evaluation is given. And finally the architecture-level evaluation is given.

What is Negative Bias Instability?
When the Si oxidization process, almost all of the Si atoms bond with oxygen and few of them bond with H. A negative bias is applied the relatively weak Si-H bonds get disturbs, this leading to the generation of interface traps. Interface traps cause the threshold voltage of the device increases, this in turn degrades the speed of the circuit.

Related work
Two basic approaches to mitigating negative bias instability: first reduce the stress on the pMOS transistor and second enhance the recovery time of Pmos. Stress Reduction Techniques: The Srinivasan et al. estimate the MTTF based on the operating conditions and use dynamic reliability management to stay within the reliability budgets Recovery-Enhancement Techniques: The Abella et al. propose to feed specific bit patterns into the devices to increase the recovery time for pMOS transistors in logic structures during idle periods and balance the degradation of the pMOS devices in SRAM-based memory structures when they hold invalid data’s.
The cells are not selected for read or write operations, we expect that cell is in hold state.

The SRAM cell has cross-coupled inverters i0 & i1, so each inverter charges the gate of the other. However, all time one of the pmos has an input value of zero. Goal of recovery enhancement is apply logic one to the input of pmos transistor. Basic idea of recovery boosting is to raise the node voltages of a memory cell. It can be achieved by raising the ground voltage.

Fine-Grained Recovery boosting techniques

The normal operating mode, bit lines is shared by all the memory cells in a given column. So, even those memory cells that are not performing read & write operation. Bit line transitions not affecting the normal operation of the ordinary the cells. To perform recovery boosting, bit lines of the cell want to be raised to high. So, need to be able to isolate the bit lines that are in the recovery boost mode.

We can provide this isolations by extending the memory cell with connections to the rail of an adjoining row or column via two pMOS access transistors. The modified SRAM cell used for controlling individual entries for both normal mode and the recovery boost mode is shown in above section. In modified cell the CR signal used for switch between the normal mode and recovery mode. CR = 1 the cell goes to recovery boost mode, moreover raise the ground voltage to 1, two extra pMOS devices are also turned on. With these connections we can put the cell in to recovery mode individually.

These devices do not effect performance strongly but it delay the transition between the normal mode to recovery boost mode. Not only is that area critical in this boosting technique.

Coarse-Grained Recovery boosting techniques

This approach the SRAM cell design has shown in Fig. 5 instead of the one control for fine-grained. A single control signal uses for the entire array into the . Control signal CR with a value of “0” raises the ground connection of each entry.

Designing Micro Architectural Structures That Support Recovery Boosting

We have discussed the basics of recovery boosting, next is designing of SRAM-based micro architectural structures that uses this technique to prevent NBTI. Here, present and evaluate the circuit-level design of two large SRAM-based structures such as physical register file and the issue queue.

Physical Register File

A 32-bit microprocessor has (mostly) 32-bit registers internally. Here construct a 4x4 "register file" comprising registers R0, R1, R2 and R3. A register file comprises a decoder which chooses a destination register and a multiplexer to direct the outputs of any register through to the data output lines. The decoder select lines may then be viewed as the destination "address" and the multiplexer select lines as the source "address".
The four registers R0, R1, R2 and R3 in the diagram below are to be implemented using the VHDL code. Each register comprises 4 static RAM cell. Each register has a 4-bit input data and a 4-bit output data. In this project replace the static RAM by modified static RAM and evaluate the performance of the register file.

The buffer is a physical memory used for store data temporarily. Typically, the buffers comprises of static RAM cell. The proposed method is to replace the static RAM cell with modified SRAM cell. The instructions written in the buffer A decodes as soon as it arrives by decode. The buffers B and C used for receive the instruction which is decoded version of buffer A instruction.

RESULTS

Circuit-Level Simulation Results

We perform simulation using Micro wind 3.1 circuit simulators to verify the functionality of conventional cell and modified cell. Also verify the functionality of fine grained and coarse grained recovery boosting. Calculate the power consumption.

When WL=1, BL=1 the output node Q will be high. When WL=1, BL=0 the output node Q will be low. Power P=92.015015u w

CR =1, SRAM cell can perform normal mode. CR=0, the cell is in recovery mode. Power P=72.453015u w
CONCLUSION

NBTI is the most important problem in the microprocessors. The SRAM based structures is mostly vulnerable to NBTI. In this paper, we proposed recovery boosting technique that permits both pMOS in the cell into the recovery mode. We show how fine-grained and coarse grained recovery boosting works. Then show how coarse grained design works with the physical register file and issue queue.

ACKNOWLEDGEMENT

The authors would like to thank Prof. H.S. Divakara Murthy, Dean & HOD of ECE department for his constructive comments and suggestions.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared