ABSTRACT

Purpose: To determine the normative values of the retinal nerve fiber layer thickness (RNFL) via spectral-domain optical coherence tomography (SD-OCT) in healthy pediatrics.

Methods: Sixty eyes of 30 healthy pediatric patients (20 females, 10 males) were included in this prospective study. After full ophthalmologic examination RNFL measurements were performed via Spectralis SD-OCT.

Results: The mean age was 10.8 ± 3.1 years (range 6 - 15). The mean central macular thickness was 261 ± 27 µm (range 223 - 434). The mean RNFL thickness was 127.9 ± 13.1 µm (range 109 – 160 µm) for superior quadrant; 76.7 ± 11.9 µm (range 15 – 93 µm) for temporal quadrant; 130.1 ± 10.5 µm (range 98 – 149 µm) for inferior quadrant and 84.5 ± 11.7 µm (range 59 – 107 µm) for nasal quadrant. The mean average RNFL thickness was 104.9 ± 6.7 µm (range 90 – 116 µm).

Conclusion: The means and normative reference ranges of RNFL thickness are provided for Spectralis OCT in healthy pediatrics, between 6-15 years old, and this values can be used as a standard to compare those of children suspected of having retinal or optic nerve abnormalities.

Keywords: Retinal Nerve Fiber Layer Thickness, RNFL, Optical Coherence Tomography, OCT, Normative Data.

INTRODUCTION

Optical coherence tomography (OCT) is a noninvasive, cross-sectional and reproducible imaging technique that can measure retinal nerve fiber layer thickness (RNFL) quantitatively. OCT has become a popular technique for diagnosing and determining progression of glaucoma. RNFL can evaluate with slit-lamp biomicroscopic examination. However, automated computerized devices can measure the RNFL quantitatively and objectively. Beside of being a diagnostic tool, OCT also can be used for monitoring disease progression and the effectiveness of treatment.

The first description of OCT by Huang et al was in 1991. OCT works similar way with ultrasound but it uses light waves instead of sound waves. For measuring the light echoes, OCT uses a spectrometer. Historically, the first systems were time-domain (TD-OCT) technologies. With recent advances in OCT technologies, spectral-domain (SD-OCT) has become available. Because of SD-OCT has the advantage of improved image quality and resolution, smaller morphologic changes became identifiable.

Retinal nerve fiber layer thickness may affect from many ocular and systemic disease. Physicians need normal databases to distinguish normal and abnormal RNFL measurements. Previous studies have proved the feasibility of OCT in the pediatric population. However all OCT devices have an integrated normative database only for adult subjects. Some earlier studies have reported normative values in children for time domain OCT devices; similar reports using spectral domain OCT devices are much less available. This study, we used Spectralis SD-OCT (Heidelberg Engineering, Inc., Vista, CA) and we aim to present RNFL measurements in healthy pediatric subjects.

MATERIALS AND METHODS

Sixty eyes of 30 patients (20 female, 10 male) were included in this prospective cross-sectional study. The inclusion criteria were: age 6 to 15 years old, best-corrected visual acuity 20/20 or better, refractive error not exceeding ±3 diopters spherical equivalent, no ophthalmic or systemic disease, no prior ocular surgery, no medical or family history of retinal diseases or glaucoma. Parents of all participants were volunteers and the study was performed according to the...
There was no difference between sex groups in any parameters. The order of RNFL was inferior quadrant>superior quadrant>nasal quadrant>temporal quadrant.

DISCUSSION

This study reported normative values for RNFL thickness in children 6–15 years of age using Spectralis SD-OCT. Correlations with biometric data showed that RNFL thickness values were not different in gender groups. Optical coherence tomography, being non-invasive and fast, is gaining more popularity in evaluating diseases of childhood including pediatric glaucoma. There is not enough studies published yet which reports normal values for children. Only a few studies reported, using Spectralis, normative RNFL data for children. One of them in Turkish children and other one in North American children. Turk et al reported that the average peripapillary RNFL thickness was 106.45 ± 9.41 µm in healthy Turkish children and added that OCT measurements were not significantly correlated with age, SE, or AL values. Yanni et al reported that the average peripapillary RNFL thickness was 107.6 ± 1.2 µm in healthy American children and they added that SD-OCT can be used to assess peripapillary RNFL thickness in children as young as 5 years. OCT is a powerful technology for the assessment of the RNFL. However, different OCT devices employ different acquisition technologies and data analysis software. It has been shown that significant variability in RNFL thickness can exist among different OCT devices. Physician needs to know for normative data for all devices and for all patients groups. Using an adult normative database for pediatrics is not agreeable.

The results between genders compared with independent samples t test and p<0.05 was considered statistically significant. SPSS 20 (SPSS Inc., Chicago, IL, USA) software was used.

RESULTS

The mean age was 10.8 ± 3.1 years (range 6 – 15 years). The mean refractive error was 0.22 ± 1.75 diopter spherical equivalents. The mean RNFL thickness was 127.9 ± 13.1 µm (range 109 – 160µm) for superior quadrant; 76.7 ± 11.9 µm (range 15 – 93 µm) for temporal quadrant; 84.5 ± 11.7 µm (range 59 – 107 µm) for nasal quadrant. The mean average RNFL thickness was 104.9 ± 6.7 µm (range 90 – 116 µm) (Table1).

<table>
<thead>
<tr>
<th></th>
<th>S</th>
<th>T</th>
<th>I</th>
<th>N</th>
<th>Aver.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>127.9 ± 13.2</td>
<td>76.8 ± 9.0</td>
<td>128.4 ± 11.7</td>
<td>82.9 ± 11.7</td>
<td>104.1 ± 7.1</td>
</tr>
<tr>
<td>Male</td>
<td>128.0 ± 13.0</td>
<td>76.7 ± 16.6</td>
<td>133.6 ± 6.1</td>
<td>87.6 ± 11.4</td>
<td>106.5 ± 5.5</td>
</tr>
<tr>
<td>Total</td>
<td>127.9 ± 13.1</td>
<td>76.7 ± 11.9</td>
<td>130.1 ± 10.5</td>
<td>84.5 ± 11.7</td>
<td>104.9 ± 6.7</td>
</tr>
</tbody>
</table>

This study adds an example of normal reference ranges for RNFL thickness measured via Spectralis SD-OCT in healthy Middle Eastern children 6–15 years of age. Other races, ethnicities should be studied in future research. Also a possible correlation of RNFL thickness with axial length, refractive status of the eye, corneal thickness should be studied.

REFERENCES

5. Lee KH, Kang MG, Lim H, Kim CY, Kim NR. A formula to predict spectral domain optical coherence tomography (OCT) retinal nerve fiber layer

Source of support: Nil, Conflict of interest: None Declared