CHEMICAL COMPOSITION AND ANTIBACTERIAL ACTIVITY OF ESSENTIAL OIL OF SCHINUS MOLLE

Ljalem Hadush Abrha* and Unnithan CR
Department of Chemistry, Mekelle University, Ethiopia

Received 20-11-2013; Revised 18-12-2013; Accepted 17-01-2014

*Corresponding Author: Unnithan CR, E-mail: crunnithan@yahoo.co.in

ABSTRACT

The constituents of essential oil isolated by hydrodistillation of the aerial parts of Schinus molle L. Anacardiaceae family, from Ethiopia was examined by GC-MS. A total of 16 components were identified accounting for 92.2 % of the oil. The essential oil of S.molle contained as main components α-phellandrene (20.6 %), β-Phellandrene (10.8%), α-pinene (8.7%), β-pinene (5.1%), β-myrcene (6.9%), β-elemene (5.0%), copane (6.5%), germacrene (5.8%), γ-cadinene (6.3%) and α-humulene (5.4%). The essential oil of S.molle showed no significant antibacterial activity against gram positive (Staphylococcus aureus) but less inhibition towards gram negative bacteria (Escherichia coli).

Keywords: Schinus molle L, Anacardiaceae, essential oil, antibacterial activity

INTRODUCTION

Schinus molle L. (Anacardiaceae), also known as Brazilian pepper tree, is a tree which is short and has thin, long leaves and it is often used in subtropical climates for landscaping. Schinus species has been traditionally used as medicine by indigenous people throughout the tropics. Pharmacological studies conducted with extracts from Schinus molle showed that this plant has hypertensive, antitumor, antifungal, antibacterial, anti-inflammatory, analgesic, and antidepressant properties [1-10]. It also exhibited antifungal activity towards storage fungi and insect repelling activities [11-13].

MATERIALS AND METHODS

Plant material
The aerial parts of Schinus molle plant was collected during the month of January 2012 from Mekelle, Ethiopia. The plant was identified by the authors and its herbarium sheet was deposited at the post graduate department of Chemistry, Mekelle University.

Essential oil extraction
The shade dried aerial parts of Schinus molle plant collected (1Kg) was subjected to hydrodistillation in a Clevenger apparatus for 3h. The essential oil was separated from aqueous layer using a 100 mL capacity separator funnel. The collected essential oil was dried over anhydrous sodium sulphate and filtered using a Whatman filter paper no. 40. The extracted essential oil was colorless liquid in appearance which was stored at 4°C in dark brown 5-mL capacity sample bottle until analysis. The yield of the oil was found to be 2.0% (w/w) in relation to the dry weight basis.

GC and GC-MS analysis
GC analyses were carried out in Agilent Technology 6890N gas Chromatograph data handling system equipped with a split-split less injector and fitted with a FID using N2 as carrier gas. The column was HP@5capillary column (30m x 0.32mm,0.25µm film thickness) and temperature program was used as follows: initial temperature of 60°C (hold : 2 min) programmed at a rate of 3°C/min to a final temperature of 220°C (hold : 5 min). Both the temperature of injector and FID were maintained at 210°C.

The GC-MS was performed by Perkin Elmer Clarus 500 gas chromatograph equipped with a split-split less injector (split ratio 50:1) data handling system. The column was an Rtx®-5 capillary columns (60 min x 0.32 mm, 0.25µm film thickness). Helium was used as carrier gas at a flow rate of 1.0ml/min. The GC was interfaced with Perkin Elmer 500 mass detector operating in EI mode. The mass spectra was recorded over 40-500 amu and revealed the Total Ion Current chromatograms. The temperature program remained the same as in GC. The temperatures of injector and transfer line were kept at 210°C and that of ion source at 200°C.

Identification of the oil components was done by comparison of their mass spectra with the NIST/Wiley library as well as by comparing them with those reported in literature. The identification of each compound was also confirmed by comparison of its retention index with those of authentic compounds [14].
Antibacterial activity
The study was conducted by using standard disc diffusion method. In each experiment, microorganisms were cultured at 37 °C for 24 hours and prepared to turbidity which is equivalent to 0.5 McFarland standards (National Committee of Clinical Laboratory Standards). Mueller-Hinton (MH) agar 38g was dissolved in 1000 ml of distilled water. Then it was boiled on heating mantle to dissolve the media completely and then sterilized by autoclaving at 15 lbs. and 121°C for 15 min. After it was autoclaved at indicated conditions, it was poured to the sterilized petridishes and allowed to set at room temperature until the agar has solidified. It was then incubated at 37 °C for 24 hours to be ready for susceptibility test.

The stock solution of the crude Schinus molle oil in Chloroform (20mg/ml) and test discs were prepared from Whatman filter paper.

A 0.5 McFarland standard was prepared as described in National Committee of Clinical Laboratory Standards (NCCLS). One percent V/V solution of sulfuric acid and 1.175% W/V solution of barium chloride were prepared and made turbidity standard. A small volume of this turbid solution was transferred to a screw capped tube and vigorously shaken on a mechanical vortex mixer to have a uniform turbid appearance and stored in the dark at room temperature.

Purely cultured Mueller-Hinton agar petridishes were labeled with different names of bacteria. Then 5 ml of sterile Normal Saline Solution (NSS) was pipetted out into a three different sterile screw-cap tubes. These tubes were labeled according to the type and number of bacteria used to test (E. coli and S. aureus). To prepare inoculums, 3 well isolated colonies of the same morphological types were selected from an agar plate culture. The top of each colony is touched with a loop, and growth was transferred into a tube containing 5 ml of NSS that corresponds to each bacterium names. These inoculums containing tubes were mixed by using mechanical vortex mixer and their turbidity was compared accurately.

The sterile discs which were prepared by office perforator were inserted in to different concentrations of Schinus molle oil with stock solution of 20mg/ml. It was impregnated in to negative and positive controls petroleum ether and chloroform, and amoxicillin respectively. After that, discs with different concentrations were placed on the inoculated plates using a pair of sterile forceps. Seven discs were placed on a 90 cm diameter petridish plate and the space between each disc was given as 24 mm gap from center of the disk to the center of petridish. The pressed discs were completely stacked the agar surface, plates were inverted and placed in an incubator at 37 C for 24 hour. After overnight incubation, the diameter of each zone (including the diameter of the disc) were measured and recorded.

Table 1: Chemical composition of essential oil of S. molle

<table>
<thead>
<tr>
<th>Peak No</th>
<th>RI</th>
<th>Compounds Identified</th>
<th>% Composition</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>986</td>
<td>α- Pinene</td>
<td>8.7</td>
</tr>
<tr>
<td>2</td>
<td>1011</td>
<td>trans-Piperitol</td>
<td>3.5</td>
</tr>
<tr>
<td>3</td>
<td>1024</td>
<td>α-Phellandrene</td>
<td>20.6</td>
</tr>
<tr>
<td>4</td>
<td>1048</td>
<td>β-Pinene</td>
<td>5.1</td>
</tr>
<tr>
<td>5</td>
<td>1030</td>
<td>β-Phellandrene</td>
<td>10.8</td>
</tr>
<tr>
<td>6</td>
<td>1130</td>
<td>β-Myrcene</td>
<td>6.9</td>
</tr>
<tr>
<td>7</td>
<td>1140</td>
<td>β-Elemene</td>
<td>5.1</td>
</tr>
<tr>
<td>8</td>
<td>1390</td>
<td>Copane</td>
<td>6.5</td>
</tr>
<tr>
<td>9</td>
<td>1423</td>
<td>Isolindene</td>
<td>1.7</td>
</tr>
<tr>
<td>10</td>
<td>1428</td>
<td>Germacrene</td>
<td>5.8</td>
</tr>
<tr>
<td>11</td>
<td>1448</td>
<td>α-Cubebene</td>
<td>1.4</td>
</tr>
<tr>
<td>12</td>
<td>1480</td>
<td>Aristolene</td>
<td>1.8</td>
</tr>
<tr>
<td>13</td>
<td>1520</td>
<td>δ-Cadinene</td>
<td>6.3</td>
</tr>
<tr>
<td>14</td>
<td>1560</td>
<td>α-Humulene</td>
<td>5.4</td>
</tr>
<tr>
<td>15</td>
<td>1620</td>
<td>α-Gurjunene</td>
<td>1.3</td>
</tr>
<tr>
<td>16</td>
<td>1640</td>
<td>β-Caryophyllene</td>
<td>1.4</td>
</tr>
</tbody>
</table>

Table 2 In vitro antibacterial test of Schinus molle oil

<table>
<thead>
<tr>
<th>Test bacterial strains</th>
<th>Concentration of crude oil (mg/ml)</th>
<th>Number of fractions</th>
<th>Positive control</th>
<th>Negative control</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20</td>
<td>10</td>
<td>5</td>
<td>1</td>
</tr>
<tr>
<td>Escherichia coli</td>
<td>7.5±0.4</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Staphylococcus aureus</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Key: All values are given as mean ± SDV which were done in doublets.

RESULTS AND DISCUSSION
The composition of essential oil of Schinus molle is shown in the table 1.A total of 92.2% was identified. The major components identified were α-phellandrene (20.6%), β-Phellandrene (10.8%), α-pinene (8.7%), β-pinene (5.1%), β-myrcene (6.9%), β-elemene (5.0%), copane (6.5%), germacrene (5.8%), γ-cadinene (6.3%) and α-humulene (5.4%). The above identified constituents in the present study were reported by earlier workers. A report from Italy on
the essential oil constituents of *Schinus molle* showed to contain α-phellandrene, limonene, β-phellandrene, myrcene, elemol, camphene, sabi nene, α and β-pinene as the main compounds in the leaf oil. An investigation from Brazil showed the presence of sabi nene and limonene as the main constituents. A recent report from Saudi Arabia showed that the leaf oil of *S. molle* contained, p-cymene, α-terpinene and β-pinene as the main volatile constituents. The essential oil of *Schinus molle* showed moderate antibacterial activity (table 2) against gram negative (*E.coli*) bacteria while no zone of inhibition towards gram positive (*S.aureus*). This report is totally in agreement with an earlier investigation. This antibacterial activity is attributed to the presence of active principles such as phellandrenes, myrcene and pinene in the oil of *S.molle*.

ACKNOWLEDGEMENT

The authors thank Higher Education of Ethiopia for providing financial support to conduct the study. The authors also acknowledge the moral support and lab facilities given by the Dean, College of Natural and Computational Sciences, Mekelle University, Ethiopia.

REFERENCES

Source of support: Nil, Conflict of interest: None Declared