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ABSTRACT 

Measurements of retinal blood vessel using morphology have been shown to be related to the risk of cardiovascular diseases. The 

improper identification of vessels may result in a large variation of these measurements, leading to a wrong clinical diagnosis. In this 

paper, we address the problem of automatically identifying true vessels as a post-processing step to vascular structure segmentation. 

We model the segmented vascular structure as a vessel segment patterns. We design a method to solve this optimization problem and 

evaluate it on a large real-world dataset of 50 retinal images. The patterns are stored in the database. We use the stored patterns to 

perform authentication process. 
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INTRODUCTION 

A Retinal image provides a snapshot of what is happening 

inside the human body. In particular, the state of the retinal 

vessels has been shown to reflect the cardiovascular condition 

of the body. Measurements to quantify retinal vascular 

structure and properties have shown to provide good 

diagnostic capabilities for the risk of cardiovascular diseases, 

arteries and veins in the retinal image, respectively.  

 

 

 

 

 

 

 

 
Figure 1:   (a) Vessel III wrongly connected to a segment that should 

belong to IV. (b) Vessel correctly identified. 

crossovers are often mistaken as vessel bifurcations, leading to 

I and II being regarded as a single vessel. Fig. 1(b) shows the 

correctly identified vessel structures for vessels I and II 

marked in blue and red, respectively. Note that the line 

segment at the second crossing (larger circle) is shared by 

vessels I and II. 

In order to disambiguate between vessels at bifurcations and 

crossovers, we need to figure out if linking a vessel segment to 

one vessel will lead to an adjacent vessel being wrongly 

identified. For example, in Fig. 1(a), if we identify vessel III 

first without any knowledge of vessel IV, the junction indicate 

.Consequently, vessels III and IV will be incorrectly 

identified, leading to a large difference in vessel 

measurements. However, if both vessels were constructed and 

considered at the same time, it becomes obvious that one of 

the branches of vessel III should be an extension of vessel IV, 

as shown in Fig. 1(b). By considering multiple vessels 

simultaneously, information from other vessels can be used to 

better decide on the linking of vessel segments. 

In this paper, we describe a novel technique that utilizes the 

global information of the segmented vascular structure to 

correctly identify true vessels in a retinal image. We model the 

segmented vascular structure as a vessel segment graph and 

transform the problem of identifying true vessels to that of 

finding an optimal forest in the graph. An objective function to 

score forests is designed based on directional information. Our 

proposed solution employs candidate generation and expert 

knowledge to prune the search space. We demonstrate the 

effectiveness of our approach on a large real-world dataset of 

2446 retinal images. The proposed technique has been 

incorporated as part of the semi-automated Singapore Eye 

Vessel Assessment (SIVA) system that has been used in real-
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world studies in both the community and hospital-based 

patient populations
1-4

. 

RELATED WORK 

Retinal vessel extraction involves segmentation of vascular 

structure and identification of distinct vessels by linking up 

segments in the vascular structure to give complete vessels. 

One branch of works, termed vessel tracking, performs vessel 

segmentation and identification at the same time
5-8

. These 

methods require the start points of vessels to be 

predetermined. Each vessel is tracked individually by 

repeatedly finding the next vessel point with a scoring 

function that considers the pixel intensity and orientation in 

the vicinity of the current point in the image. Bifurcations and 

crossovers are detected using some intensity profile. Tracking 

for the same vessel then continues along the most likely path. 

This approach of tracking vessels one-at-a-time does not 

provide sufficient information for disambiguating vessels at 

bifurcations and crossovers. 

Another branch of works treat vessel identification as a post-

processing step to segmentation
9
. The work is required the 

user to resolve the connectivity of bifurcation and crossover 

points before vessels were individually identified. For a graph 

formulation was used with Dijkstra’s shortest-path algorithm 

to identify the central vein. Similarly, Joshi et al.
 

used 

Dijkstra’s algorithm to identify vessels one-at-a-time and 

evaluated their method on a set of 15 images. However, these 

methods may lead to incorrect vessel identification because 

choosing the correct vessel segment to connect at a bifurcation 

or crossover requires information from other nearby vessels. 

Al-Diri et al used expert rules to resolve vessel crossovers and 

locally linked up segments at these crossovers to give a 

vascular network. However, they did not identify com-plete 

vessels. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2:   Example of junctions. Pixels belonging to a  

junction are shaded. 

 

GRAPH TRACER 

Our proposed method aims to identify vessels and represent 

them in the form of binary trees for subsequent vessel mea-

surements. It has two main steps:  

1) Identify crossovers, and  

2) Search for the optimal forest (set of vessel trees). We 

describe the details in the following sections. 

A. Identify Crossover Locations 

Vessels in a retinal image frequently cross each other, at a 

point or over a shared segment. We call the former crossover 

points and the latter crossover segments. 

Note that short segments between two junctions are not 

necessary true crossover segments, as shown in Fig. 6(b). 

Hence, we propose to use the directional change between 

adjacent segments and their pixel intensity values to 

differentiate crossover segments. 

where μ(s) is the mean intensity of the pixels in  

Condition 1 of Definition 7 handles the case when seg is at a 

bifurcation. For example, segment 4 in Fig. 8 is not a 

crossover segment due to the small directional change 

between segments 1 and 5. 

Condition 2 in Definition 7 handles the case when the length 

of seg is too short to determine the directional change. In this 

case, we check if the adjacent segments of seg forms a rea-

sonable cross pattern, i.e., if there exists some pairing of the 

segments in S1 with those in S2 such that their directional 

change are less than 30
◦
. Otherwise, we partition A into two 

such that the sum of the sd of both partitions is minimum. If 

this minimum is less than the sd of all the segments in A, then 

seg is a crossover segment. 

 Find the Optimal Forest 

Next, we model the segments as a segment graph and use 

constraint optimization to search for the best set of vessel.  
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig. 3. (a) Segment graph corresponding to the segments in 
Fig. 3. (b) Ex-ample forest of two binary trees (gray and 
black) corresponding to two vessels rooted at segments 1 and 
2 in Fig. 8. 
The goal is to obtain a set of binary trees from the segment 
graph such that each binary tree corresponds to a vessel in the 
retinal image. 
A binary tree is a natural representation of an actual blood 

vessel as it only bifurcates. Segment end points near the inner 

circle of the zone of interest are automatically identified as 

root pixels. The root of each tree corresponds to the root 

segment that contains a unique root pixel, i.e., the yellow dots 

in Figs. 1 and 2. Fig. 10 shows the segment graph and two 

binary trees corresponding to the two vessels in Fig. 8. We 

formulate the goal of simultaneous identification as a 

constraint optimization problem (COP). 
To solve the COP, we use a candidate enumeration algorithm 
that utilizes the lower bound of the cost function to prune the 
search space.  
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EXPERIMENT RESULTS 

We evaluate our proposed method on 2446 retinal images of 

patients from the Singapore Malay eye study [17]. For each 

image, the line image of the retinal vessels is obtained using 

the semi-automated retinal image analysis tool, SIVA. Trained 

human graders then follow a protocol to verify the correctness 

of the vascular structure obtained, e.g., arteries, veins, 

crossover locations, and branch points. We use these verified 

vascular structures as the gold standard and call the 

corresponding vessel center lines as clean line images.  
We implement the Graph tracer and a Solo tracer that traces 

vessels individually without regard for other vessels. The Solo 

tracer works as follows: it starts from one root pixel and 

follows the adjacent pixels in the line image. When a split is 

encountered, a local look ahead is done to inspect the 

directional change of the segments. If they fit the crossover 

profile, the split is treated as a crossover; otherwise, it is a 

bifurcation and the tracer will follow both paths. It is greedy 

because unless a crossover is identified, it will add all the 

connected pixels to the same vessel.  
All tracers are given the same OD, line image, artery/vein 

labeling, and use the same method to compute the vessel 

diam-eters. We evaluate their performance on both clean and 

noisy line images. Noisy line images are obtained using an 

existing vessel segmentation algorithm
9
 and is representative 

of the real-world situation where segmentation is often 

imperfect. We use the following evaluation metrics based on 

the pixels in the entire vessels. Let Big6 refer to the six largest 

arteries and veins ranked by the average width of the first 

segment of each vessel. Further, if a pixel of a traced vessel 

exists in the gold standard, it is called a matched pixel.  
1) Pixel precision: Total number of matched pixels divided 

by total number of traced vessel pixels.   
2) Pixel recall: Total number of matched pixels divided by 

total number of gold standard pixels.   
3) Big6 precision: Total number of matched pixels divided 

by total number of traced pixels of Big6.   
4) Big6 recall: Total number of matched pixels divided by 

total number of gold standard pixels of Big6.   
In our first set of experiments, we use both clean and noisy 

line images as inputs to the tracers. Fig. 12 shows the results. 

For the clean line images, both Solo and Graph tracers display 

good performance. In particular, the Graph tracer is able to 

achieve near perfect pixel precision (98.9%) and pixel recall 

(98.7%). The performance of both tracers decrease for noisy 

line images. We observe that the difference between the Solo 

tracer and Graph tracer is more pronounced, indicating that the 

Graph tracer is more robust. From these results, we conclude 

that tracing all vessels simultaneously is better than tracing 

vessels individually without current knowledge of other 

vessels. 

For the second set of experiments, we analyze the impact of 

our methods on measurement quality by computing the 

Pearson correlation coefficient (PCC) between the 

measurements of the traced vessels and the gold standard. 

These measurements are automatically computed from the 

traced and gold standard vas-cular structures, respectively. 

The vessel measurements CRAE, CRVE, and average 

curvature tortuosity of arteries (CTa ) and veins (CTv ) have 

been found to be correlated with risks factors of 

cardiovascular diseases and are positive real numbers. 

The PCC for noisy line images reaffirms that Graph tracer is 

more robust than the Solo tracer in the presence of noise. We 

observe that measurements of veins are consistently more 

correlated than those of arteries, indicating that arteries are 

more difficult to segment than veins. 

Visual inspection on the results reveals that the Solo tracer 

often traces overlapping vessel segments or wrongly 

connected bifurcations that lead to poor measurements. An 

example mis-take made by the Solo tracer on a clean line 

image is shown in Fig. 14. The arrows indicate the location 

where two vessels cross near bifurcations that causes the Solo 

tracer to erroneously link segments belonging to other vessels. 

In contrast, the Graph tracer takes both overlapping vessels 

into account when jointly identifying the vessels resulting in 

better identification. 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CONCLUSION 
 
We have presented a novel technique to identify true vessels 

from retinal images. The accurate identification of vessels is 

key to obtaining reliable vascular morphology measurements 

for clinical studies. The proposed method is a postprocessing 

step to vessel segmentation. The problem is modeled as 

finding the optimal vessel forest from a graph with constraints 
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on the vessel trees. All vessel trees are taken into account 

when finding the optimal forest; therefore, this global 

approach is acutely aware of the mislinking of vessels. 

Experiment results on a large real-world population study 

show that the proposed approach leads to accurate 

identification of vessels and is scalable. 
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